Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Geologic archives of the Laurentide Ice Sheet (LIS) provide abundant constraints regarding the size and extent of the ice sheet during the Last Glacial Maximum (LGM) and throughout the deglaciation. Direct observations of LGM LIS thickness are non-existent, however, due to ice surface elevations likely exceeding those of even the tallest summits in the northeastern United States (NE USA). Geomorphic and isotopic data from mountains across the NE USA can inform basal conditions, including the presence of warm- or cold-based regimes, while covered by ice. While warm-based ice and erosive conditions likely existed on the flanks of these summits and throughout neighboring valleys, cosmogenic nuclide inheritance and frost-riven blockfields on summits suggest ineffective glacial erosion and cold-based ice conditions. Geologic reconstructions indicate that a complex erosional and thermal regime likely existed across the NE USA sometime during and after the LGM, although this has not been confirmed by ice sheet models. Instead, current ice sheet models simulate warm-based ice conditions across this region, with disagreement likely arising from the use of low-resolution meshes (e.g., > 20 km) which are unable to resolve the high bedrock relief across the NE USA that strongly influenced overall ice flow and the complex LIS thermal state. Here, we use a newer-generation ice sheet model, the Ice-sheet and Sea-level System Model (ISSM), to simulate the LGM conditions of the LIS across the NE USA and in three localities with high bedrock relief (Adirondack Mountains, White Mountains, and Mount Katahdin), with results confirming the existence of a complex thermal regime as interpreted from the geologic data. The model uses a small ensemble of LGM climate boundary conditions and a high-resolution horizontal mesh that resolves bedrock features down to 30 m to reconstruct LGM ice flow, ice thickness, and thermal conditions. These results indicate that, across the NE USA, polythermal conditions existed during the LGM. While the majority of this domain is simulated to be warm-based, cold-based ice persists where ice velocities are slow (< 15 m yr−1), particularly across regional ice divides (e.g., Adirondack Mountains). Additionally, sharp thermal boundaries are simulated where cold-based ice across high-elevation summits (White Mountains and Mount Katahdin) flanks warm-based ice in adjacent valleys. We find that the elevation of this simulated thermal boundary ranges between 800–1500 m, largely supporting geologic interpretations that polythermal ice conditions existed across the NE USA during the LGM; however, this boundary varies geographically. In general, we show that a model using a finer spatial resolution compared to older models can simulate the polythermal conditions captured in the geologic data, with the model output being of potential utility for site selection in future geologic studies and for geomorphic interpretations of landscape evolution.more » « lessFree, publicly-accessible full text available April 15, 2026
-
Abstract. Numerical simulations of the Greenland Ice Sheet (GrIS) over geologictimescales can greatly improve our knowledge of the critical factors drivingGrIS demise during climatically warm periods, which has clear relevance forbetter predicting GrIS behavior over the upcoming centuries. To assess thefidelity of these modeling efforts, however, observational constraints ofpast ice sheet change are needed. Across southwestern Greenland, geologicrecords detail Holocene ice retreat across both terrestrial-based and marine-terminating environments, providing an ideal opportunity to rigorouslybenchmark model simulations against geologic reconstructions of ice sheetchange. Here, we present regional ice sheet modeling results using theIce-sheet and Sea-level System Model (ISSM) of Holocene ice sheet historyacross an extensive fjord region in southwestern Greenland covering thelandscape around the Kangiata Nunaata Sermia (KNS) glacier and extendingoutward along the 200 km Nuup Kangerula (Godthåbsfjord). Oursimulations, forced by reconstructions of Holocene climate and recentlyimplemented calving laws, assess the sensitivity of ice retreat across theKNS region to atmospheric and oceanic forcing. Our simulations reveal thatthe geologically reconstructed ice retreat across the terrestrial landscapein the study area was likely driven by fluctuations in surface mass balancein response to Early Holocene warming – and was likely not influencedsignificantly by the response of adjacent outlet glaciers to calving andocean-induced melting. The impact of ice calving within fjords, however,plays a significant role by enhancing ice discharge at the terminus, leadingto interior thinning up to the ice divide that is consistent withreconstructed magnitudes of Early Holocene ice thinning. Our results,benchmarked against geologic constraints of past ice-margin change, suggestthat while calving did not strongly influence Holocene ice-margin migrationacross terrestrial portions of the KNS forefield, it strongly impactedregional mass loss. While these results imply that the implementation andresolution of ice calving in paleo-ice-flow models is important towardsmaking more robust estimations of past ice mass change, they also illustratethe importance these processes have on contemporary and future long-term icemass change across similar fjord-dominated regions of the GrIS.more » « less
An official website of the United States government
